ard.collection.optiwindnet_wrap#

Classes

OptiwindnetCollection(**kwargs)

Component class for modeling optiwindnet-optimized energy collection systems.

class ard.collection.optiwindnet_wrap.OptiwindnetCollection(**kwargs)[source]#

Component class for modeling optiwindnet-optimized energy collection systems.

A component class to make a heuristic-based optimized energy collection and management system using optiwindnet! Inherits the interface from templates.CollectionTemplate.

Options#

modeling_optionsdict

a modeling options dictionary

Inputs#

x_turbinesnp.ndarray

a 1D numpy array indicating the x-dimension locations of the turbines, with length N_turbines

y_turbinesnp.ndarray

a 1D numpy array indicating the y-dimension locations of the turbines, with length N_turbines

x_substationsnp.ndarray

a 1D numpy array indicating the x-dimension locations of the substations, with length N_substations

y_substationsnp.ndarray

a 1D numpy array indicating the y-dimension locations of the substations, with length N_substations

Outputs#

total_length_cablesfloat

the total length of cables used in the collection system network

Discrete Outputs#

length_cablesnp.ndarray

a 1D numpy array that holds the lengths of each of the cables necessary to collect energy generated, with length N_turbines

load_cablesnp.ndarray

a 1D numpy array that holds the turbine count upstream of the cable segment (i.e. number of turbines whose power is collected through the cable), with length N_turbines

max_load_cablesint

the maximum cable capacity required by the collection system

terse_linksnp.ndarray

a 1D numpy int array encoding the electrical connections of the collection system (tree topology), with length N_turbines

initialize()[source]#

Initialization of OM component.

setup()[source]#

Setup of OM component.

setup_partials()[source]#

Setup of OM component gradients.

compute(inputs, outputs, discrete_inputs=None, discrete_outputs=None)[source]#

Computation for the OptiWindNet collection system design

compute_partials(inputs, J, discrete_inputs=None)[source]#

Compute sub-jacobian parts. The model is assumed to be in an unscaled state.

Parameters:
  • inputs (Vector) -- Unscaled, dimensional input variables read via inputs[key].

  • partials (Jacobian) -- Sub-jac components written to partials[output_name, input_name]..

  • discrete_inputs (dict or None) -- If not None, dict containing discrete input values.