from pathlib import Path
import copy
import numpy as np
import floris
import floris.turbine_library.turbine_utilities
import ard.farm_aero.templates as templates
[docs]
def create_FLORIS_turbine_from_windIO(
windIOplant: dict,
modeling_options: dict = {},
) -> dict:
"""
takes a windIO plant specification and creates a FLORIS turbine dictionary
Parameters
----------
windIOplant : dict
a full, presumed validated, windIO plant specification file
modeling_options : dict, optional
an Ard modeling options dictionary, which can contain FLORIS options for
configuring the FLORIS turbine
Returns
-------
dict
the FLORIS dictionary that was created, with references deep copied
Raises
------
NotImplementedError
if a valid windIO configuration for which reconciliation with the
FLORIS specification has not been implemented yet
IndexError
if the windIO file is in an apparently invalid state
"""
# extract the turbine... assuming a single one for now
windIOturbine = windIOplant["wind_farm"]["turbine"]
# generate dictionary for FLORIS utility
tdd = {}
wind_speeds_Ct_curve = windIOturbine["performance"]["Ct_curve"]["Ct_wind_speeds"]
values_Ct_curve = windIOturbine["performance"]["Ct_curve"]["Ct_values"]
if "Cp_curve" in windIOturbine["performance"]:
wind_speeds_Cp_curve = windIOturbine["performance"]["Cp_curve"][
"Cp_wind_speeds"
]
values_Cp_curve = windIOturbine["performance"]["Cp_curve"]["Cp_values"]
if not np.allclose(wind_speeds_Cp_curve, wind_speeds_Ct_curve):
raise NotImplementedError(
"Ct and Cp curves are specified with different indep. variables. "
"windIO allows seperate indep. variables for power/thrust curve "
"specification, while FLORIS requires common indep. variables. "
"Reconciliation has not been implemented yet."
)
tdd["wind_speed"] = wind_speeds_Cp_curve
tdd["power_coefficient"] = values_Cp_curve
tdd["thrust_coefficient"] = values_Ct_curve
elif "power_curve" in windIOturbine["performance"]:
wind_speeds_power_curve = windIOturbine["performance"]["power_curve"][
"power_wind_speeds"
]
values_power_curve = windIOturbine["performance"]["power_curve"]["power_values"]
if not np.allclose(wind_speeds_power_curve, wind_speeds_Ct_curve):
raise NotImplementedError(
"Ct and power curves are specified with different indep. variables. "
"windIO allows seperate indep. variables for power/thrust curve "
"specification, while FLORIS requires common indep. variables. "
"Reconciliation has not been implemented yet."
)
tdd["wind_speed"] = wind_speeds_power_curve
tdd["power"] = [
v / 1.0e3 for v in values_power_curve
] # windIO data comes in in W and FLORIS takes kW
tdd["thrust_coefficient"] = values_Ct_curve
elif all(
val in windIOturbine["performance"]
for val in [
"rated_power",
"rated_wind_speed",
"cutin_wind_speed",
"cutout_wind_speed",
]
):
# extract key values
rated_power = windIOturbine["rated_power"]
rated_wind_speed = windIOturbine["rated_wind_speed"]
cutin_wind_speed = windIOturbine["cutin_wind_speed"]
cutout_wind_speed = windIOturbine["cutout_wind_speed"]
# ### SYNTHETIC POWER CURVE ###
# for this section, we assume synthetic behavior based on the values
# specified in a windIO plant turbine specification, based on region:
#
# - region I: before cut-in, $V < `cutin_wind_speed`$
# $P(V) = 0$
# - region II: harvest all available power, $`cutin_wind_speed` < V < `rated_wind_speed`$
# $P(V) = 0.5 * rho * A * V^3 * C_{P,\max}$
# for $P_{\mathrm{rated}} = 0.5 * rho * A * V_{\mathrm{rated}}^3 * C_{P,\max}$,
# it follows that $P(V) = P_{\mathrm{rated}} \\left( \frac{V}{V_{\mathrm{rated}}} \\right)^3$
# - region III: throttle power to rated, $`rated_wind_speed` < V < `cutout_wind_speed`$
# $P(V) = P_{\mathrm{rated}}$
# - region IV: after cut-out, $V > `cutout_wind_speed`$
# $P(V) = 0$
# compute based on reg. I, II, III, IV of synthetic power curve
values_power_curve = (
wind_speeds_Ct_curve**3 / rated_wind_speed**3 * rated_power
) # scales proportionally in reg. II
values_power_curve[wind_speeds_Ct_curve >= rated_wind_speed] = (
rated_power # flat in reg. III
)
values_power_curve[wind_speeds_Ct_curve <= cutin_wind_speed] = (
0.0 # zero in reg. I
)
values_power_curve[wind_speeds_Ct_curve >= cutout_wind_speed] = (
0.0 # zero in reg. IV
)
# pack and ship
tdd["wind_speed"] = wind_speeds_Ct_curve
tdd["power"] = (
values_power_curve / 1e3
) # windIO data comes in in W and FLORIS takes kW
tdd["thrust_coefficient"] = values_Ct_curve
else:
raise IndexError(
"The windIO file appears to be invalid. Try validating and re-running."
)
# create a FLORIS turbine using the utility
turbine_FLORIS = (
floris.turbine_library.turbine_utilities.build_cosine_loss_turbine_dict(
turbine_data_dict=tdd,
turbine_name=windIOturbine["name"],
hub_height=windIOturbine["hub_height"],
rotor_diameter=windIOturbine["rotor_diameter"],
TSR=windIOturbine.get("TSR"),
generator_efficiency=windIOturbine.get("generator_efficiency", 1.0),
ref_air_density=modeling_options.get("floris", {}).get(
"ref_air_density", 1.225
),
)
)
# append peak shaving reduction fraction and TI threshhold they exist
psf_val = modeling_options.get("floris", {}).get("peak_shaving_fraction")
psf_thresh = modeling_options.get("floris", {}).get(
"peak_shaving_TI_threshold", 0.0
)
if psf_val is not None:
# if they exist, set them
turbine_FLORIS["power_thrust_table"]["peak_shaving_fraction"] = psf_val
turbine_FLORIS["power_thrust_table"]["peak_shaving_TI_threshold"] = psf_thresh
# # If an export filename is given, write it out
# if filename_turbine_FLORIS is not None:
# with open(filename_turbine_FLORIS, "w") as file_turbine_FLORIS:
# yaml.safe_dump(turbine_FLORIS, file_turbine_FLORIS)
return copy.deepcopy(turbine_FLORIS)
[docs]
class FLORISFarmComponent:
"""
Secondary-inherit component for managing FLORIS for farm simulations.
This is a base class for farm aerodynamics simulations using FLORIS, which
should cover all the necessary configuration, reproducibility config file
saving, and output directory management.
It is not a child class of an OpenMDAO components, but it is designed to
mirror the form of the OM component, so that FLORIS activities are separated
to have run times that correspond to the similarly-named OM component
methods. It is intended to be a second-inherit base class for FLORIS-based
OpenMDAO components, and will not work unless the calling object is a
specialized class that _also_ specializes `openmdao.api.Component`.
Options
-------
case_title : str
a "title" for the case, used to disambiguate runs in practice
"""
[docs]
def initialize(self):
"""Initialization-time FLORIS management."""
self.options.declare("case_title")
[docs]
def setup(self):
"""Setup-time FLORIS management."""
# set up FLORIS
self.fmodel = floris.FlorisModel("defaults")
data_path = self.options["data_path"]
self.fmodel.set(
turbine_type=[
create_FLORIS_turbine_from_windIO(self.windIO, self.modeling_options),
],
wind_shear=self.windIO["site"]["energy_resource"]["wind_resource"].get(
"shear"
),
reference_wind_height=(
self.wind_query.reference_height
if hasattr(self.wind_query, "reference_height")
else None
),
)
self.case_title = self.options["case_title"]
self.dir_floris = Path("case_files", self.case_title, "floris_inputs")
self.dir_floris.mkdir(parents=True, exist_ok=True)
[docs]
def compute(self, inputs):
"""
Compute-time FLORIS management.
Compute-time FLORIS management should be specialized based on use case.
If the base class is not specialized, an error will be raised.
"""
raise NotImplementedError("compute must be specialized,")
[docs]
def setup_partials(self):
"""Derivative setup for OM component."""
# for FLORIS, no derivatives. use FD because FLORIS is cheap
self.declare_partials("*", "*", method="fd")
[docs]
def get_AEP_farm(self):
"""Get the AEP of a FLORIS farm."""
return self.fmodel.get_farm_AEP()
[docs]
def get_power_farm(self):
"""Get the farm power of a FLORIS farm at each wind condition."""
return self.fmodel.get_farm_power()
[docs]
def get_power_turbines(self):
"""Get the turbine powers of a FLORIS farm at each wind condition."""
return self.fmodel.get_turbine_powers().T
[docs]
def get_thrust_turbines(self):
"""Get the turbine thrusts of a FLORIS farm at each wind condition."""
# FLORIS computes the thrust precursors, compute and return thrust
# use pure FLORIS to get these values for consistency
# prepare to unpack thrust data that is not pre-computed in FLORIS
CT_turbines = self.fmodel.get_turbine_thrust_coefficients()
V_turbines = self.fmodel.turbine_average_velocities
rho_floris = self.fmodel.core.flow_field.air_density
A_floris = np.pi * self.fmodel.core.farm.rotor_diameters**2 / 4
# unpacking procedure
# from FLORIS's floris_model.py:564 at a6fc5d35aa32614edc450dc399c42af60a816887
thrust_turbines = CT_turbines * (0.5 * rho_floris * A_floris * V_turbines**2)
if isinstance(self.fmodel.wind_data, floris.WindRose) or isinstance(
self.fmodel.wind_data, floris.WindRoseWRG
):
thrust_turbines_densified = np.full(
(
np.prod(self.fmodel.wind_data.freq_table.shape),
self.fmodel.core.farm.n_turbines,
),
0.0,
)
thrust_turbines_densified[self.fmodel.wind_data.non_zero_freq_mask, :] = (
thrust_turbines
)
return thrust_turbines_densified.T
else:
return thrust_turbines.T
[docs]
def dump_floris_yamlfile(self, dir_output=None):
"""
Export the current FLORIS inputs to a YAML file file for reproducibility of the analysis.
The file will be saved in the `dir_output` directory, or in the current working directory
if `dir_output` is None.
"""
if dir_output is None:
dir_output = self.dir_floris
self.fmodel.core.to_file(Path(dir_output, "batch.yaml"))
[docs]
class FLORISBatchPower(templates.BatchFarmPowerTemplate, FLORISFarmComponent):
"""
Component class for computing a batch power analysis using FLORIS.
A component class that evaluates a series of farm power and associated
quantities using FLORIS. Inherits the interface from
`templates.BatchFarmPowerTemplate` and the computational guts from
`FLORISFarmComponent`.
Options
-------
case_title : str
a "title" for the case, used to disambiguate runs in practice (inherited
from `FLORISFarmComponent`)
modeling_options : dict
a modeling options dictionary (inherited via
`templates.BatchFarmPowerTemplate`)
wind_query : floris.wind_data.WindRose
a WindQuery objects that specifies the wind conditions that are to be
computed (inherited from `templates.BatchFarmPowerTemplate`)
Inputs
------
x_turbines : np.ndarray
a 1D numpy array indicating the x-dimension locations of the turbines,
with length `N_turbines` (inherited via
`templates.BatchFarmPowerTemplate`)
y_turbines : np.ndarray
a 1D numpy array indicating the y-dimension locations of the turbines,
with length `N_turbines` (inherited via
`templates.BatchFarmPowerTemplate`)
yaw_turbines : np.ndarray
a numpy array indicating the yaw angle to drive each turbine to with
respect to the ambient wind direction, with length `N_turbines`
(inherited via `templates.BatchFarmPowerTemplate`)
Outputs
-------
power_farm : np.ndarray
an array of the farm power for each of the wind conditions that have
been queried (inherited from `templates.BatchFarmPowerTemplate`)
power_turbines : np.ndarray
an array of the farm power for each of the turbines in the farm across
all of the conditions that have been queried on the wind rose
(`N_turbines`, `N_wind_conditions`) (inherited from
`templates.BatchFarmPowerTemplate`)
thrust_turbines : np.ndarray
an array of the wind turbine thrust for each of the turbines in the farm
across all of the conditions that have been queried on the wind rose
(`N_turbines`, `N_wind_conditions`) (inherited from
`templates.BatchFarmPowerTemplate`)
"""
[docs]
def initialize(self):
super().initialize() # run super class script first!
FLORISFarmComponent.initialize(self) # FLORIS superclass
[docs]
def setup(self):
super().setup() # run super class script first!
FLORISFarmComponent.setup(self) # setup a FLORIS run
[docs]
def setup_partials(self):
FLORISFarmComponent.setup_partials(self)
[docs]
def compute(self, inputs, outputs):
# generate the list of conditions for evaluation
self.time_series = floris.TimeSeries(
wind_directions=np.degrees(np.array(self.wind_query.wind_directions)),
wind_speeds=np.array(self.wind_query.wind_speeds),
turbulence_intensities=np.array(self.wind_query.turbulence_intensities),
)
# set up and run the floris model
self.fmodel.set(
layout_x=inputs["x_turbines"],
layout_y=inputs["y_turbines"],
wind_data=self.time_series,
yaw_angles=np.array([inputs["yaw_turbines"]]),
reference_wind_height=(
self.wind_query.reference_height
if hasattr(self.wind_query, "reference_height")
else None
),
)
if "peak_shaving_fraction" in self.modeling_options.get("floris", {}):
self.fmodel.set_operation_model("peak-shaving")
self.fmodel.run()
# dump the yaml to re-run this case on demand
# FLORISFarmComponent.dump_floris_yamlfile(self, self.dir_floris)
# FLORIS computes the powers
outputs["AEP_farm"] = FLORISFarmComponent.get_AEP_farm(self)
outputs["power_farm"] = FLORISFarmComponent.get_power_farm(self)
if self.options["modeling_options"]["aero"]["return_turbine_output"]:
outputs["power_turbines"] = FLORISFarmComponent.get_power_turbines(self)
outputs["thrust_turbines"] = FLORISFarmComponent.get_thrust_turbines(self)
[docs]
class FLORISAEP(templates.FarmAEPTemplate):
"""
Component class for computing an AEP analysis using FLORIS.
A component class that evaluates a series of farm power and associated
quantities using FLORIS with a wind rose to make an AEP estimate. Inherits
the interface from `templates.FarmAEPTemplate` and the computational guts
from `FLORISFarmComponent`.
Options
-------
case_title : str
a "title" for the case, used to disambiguate runs in practice (inherited
from `FLORISFarmComponent`)
modeling_options : dict
a modeling options dictionary (inherited via
`templates.FarmAEPTemplate`)
wind_query : floris.wind_data.WindRose
a WindQuery objects that specifies the wind conditions that are to be
computed (inherited from `templates.FarmAEPTemplate`)
Inputs
------
x_turbines : np.ndarray
a 1D numpy array indicating the x-dimension locations of the turbines,
with length `N_turbines` (inherited via `templates.FarmAEPTemplate`)
y_turbines : np.ndarray
a 1D numpy array indicating the y-dimension locations of the turbines,
with length `N_turbines` (inherited via `templates.FarmAEPTemplate`)
yaw_turbines : np.ndarray
a numpy array indicating the yaw angle to drive each turbine to with
respect to the ambient wind direction, with length `N_turbines`
(inherited via `templates.FarmAEPTemplate`)
Outputs
-------
AEP_farm : float
the AEP of the farm given by the analysis (inherited from
`templates.FarmAEPTemplate`)
power_farm : np.ndarray
an array of the farm power for each of the wind conditions that have
been queried (inherited from `templates.FarmAEPTemplate`)
power_turbines : np.ndarray
an array of the farm power for each of the turbines in the farm across
all of the conditions that have been queried on the wind rose
(`N_turbines`, `N_wind_conditions`) (inherited from
`templates.FarmAEPTemplate`)
thrust_turbines : np.ndarray
an array of the wind turbine thrust for each of the turbines in the farm
across all of the conditions that have been queried on the wind rose
(`N_turbines`, `N_wind_conditions`) (inherited from
`templates.FarmAEPTemplate`)
"""
[docs]
def initialize(self):
super().initialize() # run super class script first!
FLORISFarmComponent.initialize(self) # add on FLORIS superclass
[docs]
def setup(self):
super().setup() # run super class script first!
FLORISFarmComponent.setup(self) # setup a FLORIS run
def setup_partials(self):
super().setup_partials()
[docs]
def compute(self, inputs, outputs):
# set up and run the floris model
self.fmodel.set(
layout_x=inputs["x_turbines"],
layout_y=inputs["y_turbines"],
wind_data=self.wind_query,
yaw_angles=np.array([inputs["yaw_turbines"]]),
reference_wind_height=(
self.wind_query.reference_height
if hasattr(self.wind_query, "reference_height")
else None
),
)
if "peak_shaving_fraction" in self.modeling_options.get("floris", {}):
self.fmodel.set_operation_model("peak-shaving")
self.fmodel.run()
# dump the yaml to re-run this case on demand
FLORISFarmComponent.dump_floris_yamlfile(self, self.dir_floris)
# FLORIS computes the powers
outputs["AEP_farm"] = FLORISFarmComponent.get_AEP_farm(self)
outputs["power_farm"] = FLORISFarmComponent.get_power_farm(self)
outputs["power_turbines"] = FLORISFarmComponent.get_power_turbines(self)
outputs["thrust_turbines"] = FLORISFarmComponent.get_thrust_turbines(self)
[docs]
def setup_partials(self):
FLORISFarmComponent.setup_partials(self)